Содержание

Галереи

Спортзалы

Паркур

Спортивное видео

Поиск

Пользовательского поиска

 

Материалы старого сайта находятся здесь

Главная Контакты

Энергетика мышечной деятельности - 2

Автор: -

Дата: 2010-03-28

Сравнительная емкость источников энергии мышечного сокращения (на 1 моль субстрата)

Био
энергетические субстраты
Анаэробный метаболизм

Аэробный
метаболизм

АТФКрФГлюкозаГлюкозаЖирыБелки
Энергоемкость10105070024007200

Чем выше относительная мощность аэробной работы, тем выше относительный вклад в энергопродукцию углеводов, и меньше - жиров.Между мощностью физической работы аэробного характера и скоростью потребления кислорода существует линейная зависимость, поэтому интенсивность аэробной работы можно охарактеризовать скоростью потребления кислорода. При определенной мощности физической нагрузки достигается индивидуальное ля каждого человека максимальное потребление кислорода (МПК), показатель которого является интегральным критерием мощности аэробной системы энергообеспечения. Мощность физической нагрузки (или скорость передвижения), при которой достигается МПК, называется критической. У молодых здоровых нетренированных мужчин МПК составляет в среднем 40-50 мл/кГ*мин, а у высокотренированных спортсменов в видах спорта на выносливость - достигает 80-90 мл/кГ*мин.

При равномерной непрерывной работе, если ЧСС не превышает 150-160 уд/мин, скорость потребления кислорода возрастает до такой величины, которая запрашивается работающими мышцами, а организм способен удовлетворять этот "запрос". Работа на данном уровне мощности физической нагрузки при "устойчивом состоянии" метаболических процессов может продолжаться достаточно долго (см. рис. 2).

Рис.2

Рис. 2. Возникновение кислородного дефицита в начале работы и его устранение: А - после кратковременной интенсивной работы; Б - в процессе длительной работы умеренной мощности


При возрастании интенсивности работы, когда ЧСС увеличивается до 170-190 уд/мин, "устойчивое состояние" не устанавливается, хотя потребление кислорода возрастает до достижения МПК. Максимальный уровень потребления кислорода даже у тренированных людей не может поддерживаться долго - больше 6-8 минут. Если мощность работы превысила уровень МПК, то устойчивое состояние работоспособности не устанавливается, т. е. возникает ложное "устойчивое состояние".При такой работе потребность организма в кислороде полностью не удовлетворяется, так как уже исчерпаны возможности сердечно-сосудистой системы по его доставке к работающим мышцам или исчерпана окислительная способность дыхательных ферментов в мышечных клетках (рис. 3).

Рис.3

Рис. 3. Кислородный приход, кислородный дефицит и кислородный долг при длительной работе разной мощности. А - при легкой, Б - при тяжелой, и В - при истощающей работе; I - период врабатывания; II - устойчивое (А, Б) и ложное устойчивое (В) состояние во время работы; III - восстановительный период после выполнения упражнения; 1 - алактатный, 2 - гликолитический компоненты кислородного долга (по Волкову Н. И., 1986)

В условиях кислородного дефицита активизируются анаэробные системы ресинтеза АТФ. С началом интенсивной работы и в первые секунды ее выполнения, при "врабатывании" организма или при резких кратковременных увеличениях мощности работы ("спрутах"), преимущественное значение для энергообеспечения имеет фосфагенная система. Но по мере исчерпания ее энергетических резервов в работающих мышцах, начинает возрастать роль анаэробного гликолиза. Организм при этом работает как бы "в долг". Этот кислородный "долг" устраняется во время отдыха или при существенном снижении мощности работы. При этом восстановление израсходованных фосфагенов (АТФ+КрФ) происходит полностью через 305 минут, а наполовину - за 25-30 секунд отдыха. Это так называемый быстрый (алактатный) компонент кислородного долга. Та же его часть, которая отражает степень участия в работе анаэробного гликолиза и, следовательно, восстановление израсходованных субстратов - полностью устраняется лишь за 1.5-2.0 часа, а наполовину - за 15-30 минут. Это медленный (лактатный) компонент кислородного долга.

Образование молочной кислоты в мышечных клетках имеет место с началом практически любой, даже преимущественно аэробной физической работы. Однако, содержание МК в крови во время легкой работы мало отличается от уровня покоя. При увеличении мощности работы и возрастания потребления кислорода более 5-% от МПК, кривая накопления МК в крови резко поднимается. Эта граница выраженного перехода от преимущественно аэробного энергообеспечения работы к смешанному аэробно-анаэробному, когда начинают активизироваться анаэробные процессы, называется анаэробным пророгом, или порогом анаэробного обмена (ПАНО). Если рабочая нагрузка превышает уровень ПАНО, в работающих мышцах и в крови начинает интенсивно накапливаться молочная кислота, тяжесть физической работы возрастает и она рассматривается в физиологии труда и спорта как напряженная работа смешанной аэробно-анаэробной направленности. Показатели ПАНО являются критериями аэробной эффективности. Для профессиональной деятельности это имеет вполне определенное значение: чтобы нетренированных человек был способен длительное время выполнять свою профессиональную работу, в которой задействованы большие мышечные группы, он не должен превышать мощности, соответствующей примерно 50%-му уровню МПК или своего анаэробного порога. С другой стороны, люди, систематически тренирующиеся в упражнениях на выносливость, способны не только увеличить МПК, а также минимизировать свои энерготраты за счет совершенствования техники рабочих движений. Для профессионально-прикладной подготовки путь повышения физической работоспособности через увеличение аэробной эффективности менее рискован и наиболее приемлем, так как не требует значительного увеличения рабочей ЧСС и потому доступен всем возрастным категориям людей. Именно с этим связано широкое распространение оздоровительного бега трусцой и аналогичных по физиологическому воздействию других средств физической подготовки.

Во время выполнения относительно легкой работы, когда потребление кислорода не превышает 50% от максимума (с продолжительностью до нескольких часов), большая часть энергии поставляется мышцам за счет окисления жиров. Во время более напряженной работы, когда потребление кислорода превышает 60% от максимума, значительная часть энергии поставляется уже и за счет окисления углеводов. При мощности работы, близкой к критической, подавляющую часть энергопродукции обеспечивает окисление углеводов.

В реальных условиях физических нагрузок, как правило, задействованы все биоэнергетические системы. В зависимости от мощности, продолжительности и вида выполняемой работы меняется лишь соотношение механизмов ее энергообеспечения (см. рис. 4). Однако, совершенство методики физической тренировки заключается в том, чтобы добиться наибольшего прироста спортивной или профессиональной работоспособности с наименьшими затратами энергии и времени. Это становится возможным при направленном, избирательном тренировочном воздействии на отдельные компоненты физической работоспособности, но не при использовании физических нагрузок "внавал", т. е. по принципу "сколько выдержишь".

Рис.4

Рис. 4. Динамика потребления кислорода (ПК) и концентрации молочной кислоты в крови (МК) у тренированного испытуемого (мастера спорта в беге на 5000 м) при непрерывной работе на третбане со ступенчатым повышением скорости бега через каждые 2 минуты на 0,5 м/с. 1 - динамика ПК; 2 - динамика концентрации МК в крови; V1 - скорость бега на уровне ПАНО; V2 - критическая скорость.

Просмотров: 3684

Комментарии

Комментарий добавил: Ася
Дата: 2011-05-15

Хорошая статья..коротко и ясно...спасибо..

Добавить комментарий:

Введите сумму чисел с картинки


 Tatarstan.Net -